Introduction: Clinical Trials¶
Goal: Determine if a new test or treatment works and is safe.
Three main phases of clinical trials$^{[1]}$:
| Phase | Purpose | Typical number of participants | Success rate |
|---|---|---|---|
| I | Safety and dosage | 20-100 healthy volunteers or patients | Approx. 70% |
| II | Efficacy and side effects | Up to several hundred patients | Approx. 33% |
| III | Efficacy and monitoring of adverse reactions | 300 to 3,000 patients | Approx. 25%-30% |
Phase II Clinical Trials¶
- Objective: Determine if the new treatment is effective enough to warrant further study in a larger phase III trial, as well as to further assess safety.
- Endpoints: Binary (e.g., response vs. no response)
- Hypothesis:
$$ \begin{equation*} \begin{aligned} H_0: p \leq p_0 \quad &\text{vs.} \quad H_1: p \geq p_1 \\ \text{type I error: } \alpha & = P(\text{rej. } H_0 | H_0) \\ \text{type II error: } \beta & = P(\text{rej. } H_1 | H_1) \end{aligned} \end{equation*} $$ where $p$ is the true response rate and $p_0$ and $p_1$ are the uninteresting level and the desirable level, respectively.
A Motivating Example
Let set $p_0 = .05$, $p_1 = .25$, $\alpha = .10$, and $\beta = .10$ and calculate the sample size under Simon's two-stage optimal design$^{[2]}$. Note: $n, n_i, r, r_i, x_i, i=1,2$ are integers.
| Notation | Definition | Value |
|---|---|---|
| $n_1$ | sample size in stage I | 9 |
| $x_1$ | # responses in stage I | ? |
| $r_1$ | rejection points in stage I | 0 |
| $n_2$ | sample size in stage II | 15 |
| $x_2$ | # responses in stage II | ? |
| $r$ | total rejection points | 2 |
Accept only if $x_1 \geq r_1$ and $x_1+x_2 \geq r$.
A Motivating Example (cont'd)
Question: Why we need a two-stage design?
A Motivating Example (cont'd)
| Notation | Definition | Value |
|---|---|---|
| $n$ | total sample size | 24 |
| PET$(p_0)$ | probability of early termination under $p_0$ | 0.63 |
| EN$(p_0)$ | expected sample size under $p_0$ | 14.5 |
$\text{PET}(p_0) = P(x_1 \leq r_1 | p=p_0) = \text{Bin}(r_1; n_1, p_0) = \sum_{i=0}^{r_1} \binom{n_1}{i} p_0^i (1-p_0)^{n_1-i} = .63$
$\text{EN}(p_0) = n_1 + \left(1-\text{PET}(p_0)\right)*n_2 = 14.5$
If early termination is allowed, the expected sample size EN is less than the total sample size $n$.
Phase II Clinical Trials: (cont'd)¶
- Optimal design: Minimize EN$(p_0)$ when $p=p_0$ subject to the constraints of $\alpha$ and $\beta$.
- Minimax design: Minimize $n$ when $p=p_0$ subject to the constraints of $\alpha$ and $\beta$.
- Constraints: $$\begin{aligned} \alpha & = P(\text{rej. } H_0 | H_0) \\ \beta & = P(\text{rej. } H_1 | H_1) \end{aligned}$$
Calculation of Sample Size¶
Suppose # responses in stage I and stage II $X_1 \sim \text{Bin}\left(n_1, p\right)$ and $X_2 \sim \text{Bin}\left(n_2, p\right)$, respectively. We declare the new drug a
- Failure if $\xi_F: X_1 \leq r_1$ OR ($X_1>r_1$ and $X_1+X_2 \leq r$)
- Success if $\xi_S: X_1>r_1$ and $X_1+X_2>r$
Therefore, $$\begin{equation*} P\left(\xi_F \mid p \leq p_0\right) \leq \alpha, \quad P\left(\xi_F \mid p \geq p_1\right) \leq \beta \end{equation*} $$
Moreover, we have $$\begin{equation*} \begin{aligned} P\left(\xi_S \mid p\right) & =\sum_{x_1>r_1, x_1+x_2>r} b\left(x_1 ; n_1, p\right) b\left(x_2 ; n_2, p\right) \\ P\left(\xi_F \mid p\right) & =1-P\left(\xi_S \mid p\right) \\ & =B\left(r_1 ; n_1, p\right)+\sum_{x=r_1+1}^{\min \left\{n_1, r\right\}} b\left(x ; n_1, p\right) B\left(r-x ; n_2, p\right) \end{aligned} \end{equation*} $$
Calculation of Sample Size (cont'd)
The probability of early rejection in stage I is $$ \begin{equation*} \begin{aligned} \text{PET}(p_0)&=P\left(X_1 \leq r_1 \mid p=p_0\right)\\ & = \text{Bin}(r_1; n_1, p_0)\\ & = \sum_{i=0}^{r_1} \binom{n_1}{i} p_0^i (1-p_0)^{n_1-i} \end{aligned} \end{equation*} $$
The expected sample size EN$\left(p_0\right)$ is given by $$\text{EN}(p_0) =n_1+n_2 (1-\text{PET}(p_0))$$
Algorithm for Simon's Two-Stage Design¶

Then, calculate PET$(p_0)$ and EN$(p_0)$. The minimax design chooses the pair $(r_1, r, n_1, n_2)$ that minimizes $n$, while the optimal design chooses the pair that minimizes EN$(p_0)$.
Results¶
Simon 2-stage Phase II design
Unacceptable response rate: 0.05
Desirable response rate: 0.25
Error rates: alpha = 0.1 ; beta = 0.1
r1 n1 r n EN(p0) PET(p0) qLo qHi
Minimax 0 13 2 20 16.41 0.5133 0.523 1.000
Admissible 0 11 2 21 15.31 0.5688 0.332 0.523
Admissible 0 10 2 22 14.82 0.5987 0.119 0.332
Optimal 0 9 2 24 14.55 0.6302 0.000 0.119
Results (cont'd)
Reference¶
- U.S. Food and Drug Administration (FDA). Step 3: Clinical Research. The Drug Development Process. https://www.fda.gov/patients/drug-development-process/step-3-clinical-research.
- Simon, Richard. 1989. “Optimal Two-Stage Designs for Phase II Clinical Trials.” Controlled Clinical Trials 10 (1): 1–10., doi: 10.1016/0197-2456(89)90015-990015-9).
- Hao Sun. Chapter 2 Phase II design: Simon’s two-stage design. Design Notebook. 2023.https://bookdown.org/eugenesun95/designbook/phase-ii-design.html#simons-two-stage-design